

DESCRIPTION OF PROGRAMME OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology & Food Processing

NAME OF THE PROGRAMME: B.Sc. (Hons.) biotechnology

P.O. No.	Description of Programme Outcome	Domain as per Bloom's Taxonomy	Level of Bloom Taxonomy*
PO-1	Possess knowledge and comprehension of the core and basic knowledge associated with the profession of biotechnology, including agricultural science, pharmaceutical science and food science	Cognitive	1
PO-2	Demonstrate effective planning abilities including time management, resource management, delegation skills and organizational skills.	Psychomotor	1,2,3
PO-3	Utilize the principles of scientific enquiry and thinking analytically, clearly &critically while solving problems and making decisions during daily practices.	Affective	1,2,3
PO-4	Locate, select and apply appropriate methods and procedures, resources and modern biotechnology-related computing tools with an understanding of the limitations.	Psychomotor	1,2,3,4,5,6
PO-5	Communicate effectively with the biotechnology community and with society at large such as, being able to comprehend and write effective reports, make effective presentations-	Cognitive	1

	documentation and give and receive clear instructions.		
PO-6	Explainthe impact of professional biotechnology solutions in societal and environmental contexts and demonstrate the knowledge and need for sustainable development	Cognitive	1
PO-7	Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change. Self-assess and use feedback effectively from others to identify learning needs and to satisfy these needs.	Cognitive	1
PO-8	Developing the processes and applications which will have profound impact on sectors such as agriculture, industry, healthcare and restoration of degraded environment to provide sustainable competitive edge to present society.	Psychomotor	1,2,3,4,5,6
PO-9	Recognize the solutions for complex biological-based problems and design the process that address to the specific needs for the public health, safety and environmental considerations	Cognitive	1
PO-10	Work effectively as an individual, member or the leader of diverse teams in multidisciplinary settings.	Affective	1,2,3
PO-11/PSO1	Explain knowledge in the field of biotechnology and applied sciences.	Cognitive	1
PO-12/PSO2	Design and conduct experiments in biotechnology as well as analyze and interpret data.	Psychomotor	1,2,3,4,5,6
PO-13/PSO3	Demonstrate current techniques, skills and modern tools necessary for modeling and design of bioprocesses	Cognitive , Psychomotor	1,2,3
PO-14/PSO4	Develop and implement plans and organize work to meet deadlines.	Cognitive	1,2,3,4,5,6
PO-15/PSO5	Recognize and attain an opportunity in Entrepreneurship sector.	Cognitive	1, 2, 3

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B. Sc. (HONS) Biotechnology

NAME OF COURSE: Molecular Biology (BHB17)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Demonstrate knowledge and understanding of the molecular machinery of living cells.	Exams, Oral Exams, Quizzes, Home Assignments
CO-2	Analyze, interpret, and participate in reporting to their peers on the results of their laboratory experiments	Exams, Oral Exams, Quizzes, Home Assignments, Class Assignments
CO-3	Devise to implement experimental protocols and adapt them to plan and carry out simple investigations.	Exams, Oral Exams, Quizzes, Home Assignments, Virtual Labs, Authentic Problem solving
CO-4	Develop the understanding of the principles and basic mechanisms of metabolic control and molecular signaling	Exams, Oral Exams, Quizzes, Home Assignments, Authentic Problem solving

CO-5	Insight the participation in report orally on team work investigations of problem-based assignments	Exams, Oral Exams, Quizzes, Home Assignments
CO-6	Comprehensive knowledge and understanding of the principles that govern the structures of macromolecules and their participation in molecular recognition.	Exams, Oral Exams, Quizzes, Home Assignments, Virtual Labs, Authentic Problem solving

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B. Sc. (HONS) Biotechnology

NAME OF COURSE: PRACTICALS PERTAINING TO (BHB17)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Illustrate the method of agarose gel electrophoresis of plasmid DNA	Group discussion, Virtual Classes, Lab work, seminar
CO-2	Explain preparation of solutions for molecular biology experiments.	Group discussion, Virtual Classes, Lab work, seminar
CO-3	Describe isolation of chromosomal DNA from bacterial cells.	Group discussion, Virtual Classes, Lab work, seminar
CO-4	Demonstrate agarose gel electrophoresis of plasmid DNA	Group discussion, Virtual Classes, Lab work,

		seminar
CO-5	Devise method for isolation of Plasmid DNA by alkaline lysis method	Group discussion, Virtual Classes, Lab work,
		seminar
CO-6	Distinguish various methods of DNA isolation from different samples.	Group discussion, Virtual Classes, Lab work, seminar
		seminar

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: **B. Sc. Biotechnology**

NAME OF COURSE: Tissue Culture Technology (Paper VII)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Outline the knowledge and understanding regarding basics of animal and plant cell culture, their historical developments and major contribution.	Exams, Oral Exams, Quizzes, Home Assignments
CO-2	Analyze, interpret different methods of cellular totipotency, protoplast isolation and culture	Exams, Oral Exams, Quizzes, Home Assignments, Class Assignments
CO-3	Devise to implement industrial experimental and applications of plant and animal tissue culture.	Exams, Oral Exams, Quizzes, Home Assignments, Virtual Labs, Authentic Problem solving
CO-4	Illustrate the establishment of plant tissue culture and to set up a primary culture after mechanical disruption/enzymatic disruption of cells.	Exams, Oral Exams, Quizzes, Home Assignments, Authentic Problem solving

CO-5	Determine the viability and cell count by haemocytometer.	Exams, Oral Exams, Quizzes, Home Assignments
CO-6	Calculate the cell number by crystal violet staining.	Exams, Oral Exams, Quizzes, Home Assignments, Virtual
		Labs, Authentic Problem solving

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B.Sc. (Hons) Biotechnology

NAME OF COURSE:Biostatistics (BHB4)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Apply basic statistical concepts commonly used in health and medical sciences	Exams, Oral Exams, Quizzes, Home Assignments
CO-2	Use basic analytical techniques to generate results	Exams, Oral Exams, Quizzes, Home Assignments
CO-3	Interpret results of commonly used statistical analyses in written summaries	Exams, Oral Exams, Quizzes, Home Assignments
CO-4	Demonstrate statistical reasoning skills correctly and contextually	Exams, Oral Exams, Quizzes, Home Assignments
CO-5	Compute statistical problems using computer graphical means	Exams, Oral Exams, Quizzes, Home Assignments, Virtual
		Labs

CO-6	Analyse data characteristics and form of distribution of data structure	Exams, Oral Exams, Quizzes, Home Assignments
		,

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B. Sc. (HONS) Biotechnology

NAME OF COURSE:PRACTICALS PERTAINING TO (BHB4)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Practice question based on graphical representation	Group discussion, Class Assignment
CO-2	Enumerate the problems based on measures of central tendency & dispersion	Group discussion, Class Assignment
CO-3	Calculate the situations based on binomial distributions normal distributions	Group discussion, Class Assignment

CO-4	Solve problems based on t, f, z and Chi-square	Group discussion, Class Assignment
CO-5	Demonstrate poisson distributions with the help of examples	Group discussion, Class Assignment
CO-6	Calculate the problems based on measures of kurtosis.	Group discussion, Class Assignment

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE PROGRAM : B.Sc(BT)Hons. Ist (2nd SEM)

NAME OF THE COURSE : (English II)

NAME OF FACULTY : Mandeep Kaur (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Develop critical and creative thinking skills by examine texts.	MST, Class tests, Class Assignment.
CO 2	Develop the ability to respond to a variety of situation and contexts by shifting	MST, Seminar, Class Assignment, Class tests.
	voice, tone, level formality, design, medium and structure.	
CO 3	Demonstrate an appreciation of the literature through discussion and written	MST, Class assignments, class tests,
	analysis.	
CO 4	Apply the LSRW skills.	MST, Seminar, GD, Role play examples.
CO 5	Practise English grammar to aware the students about the correct usage of it.	MST, Participation in class, Class assignments, Class tests.
CO 6	Develop the fluency of language, presentation skills and creative writing.	MST, Participation in class, Class assignments, Class tests.

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B. Sc. (HONS) Biotechnology

NAME OF COURSE: Genetics (BHB12)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Describe advanced techniques in genome analysis, molecular phylogenetics.	Exams, Oral Exams, Quizzes, Home Assignments
CO-2	Analyse strategies of gene transfers, mutation, selection and migration, the chromosome structure, chromatin organization and variation.	Exams, Oral Exams, Quizzes, Home Assignments, Class Assignments
CO-3	Explore the applications of genetic engineering in plants and animals.	Exams, Oral Exams, Quizzes, Home Assignments, Virtual Labs, Authentic Problem solving
CO-4	Develop the understanding for management of inherited human diseases, genome evolution, population variation and speciation.	Exams, Oral Exams, Quizzes, Home Assignments, Authentic Problem solving

CO-5	Insight into the applications of bioinformatics, statistical analysis in genetics.	Exams, Oral Exams, Quizzes, Home Assignments,
CO-6	Comprehensive and detailed understanding of inbreeding and its effect on small/isolated	Exams, Oral Exams, Quizzes, Home Assignments, Virtual
	population the principles of selection and breeding methods in plants and animals.	Labs, Authentic Problem solving

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B. Sc. (HONS) Biotechnology

NAME OF COURSE: PRACTICALS PERTAINING TO (BHB12)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Illustrate permanent and temporary mount of mitosis.	Group discussion, Virtual Classes, Class Assignment
CO-2	Explain permanent and temporary mount of meiosis.	Group discussion, Class Assignment, Virtual Classes
CO-3	Describe mendelian deviations in di-hybrid crosses	Group discussion, Class Assignment, Virtual Classes
CO-4	Demonstrate Barr Body.	Group discussion, Class Assignment, Virtual Classes
CO-5	Devise karyotyping with the help of photographs	Group discussion, Class Assignment, Virtual Classes
CO-6	Distinguish Pedigree charts of some common characters like blood group, color blindness.	Group discussion, Class Assignment, Virtual Classes

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B.Voc. Food Processing (B.VFP 214)

NAME OF COURSE: Introduction to Food Microbiology

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Describe Food microbiology, important terms, Safety regulations for food microbiology.	Group discussion, Presentation, Exam.
CO-2	Enlist the types of microorganisms, classification and nomenclature of micro organisms, structure & functions .	Exams, Class test, Presentation, Assignments.
CO-3	Demonstrate microscopy ant its uses.	Exams, Class test, Presentation, viva

CO-4	Discuss microbial growth in food, Characterstics, bacterial growth curve ,.	Exams, Class test, Presentation, Group discussion
CO-5	Define cultivation of microorganisms, methods, techniques, Hygienic handling of food.	Exams, Class test, Presentation
CO-6	Explain sources of microorgamisms in food, food spoilage bacteria	Presentation, Seminar, Class test, viva.

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B.Voc. Food Processing (B.VFP 214)

NAME OF COURSE: Practical Pertaining theory B.VFP 214

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Introduce Food microbiology & Lab safety.	Lab Work
CO-2	Practice the use of laminar air flow, microscope, Autoclave.	Lab Work
CO-3	Perform Cultivation of microbes.	Lab Work

CO-4	Prepare slant ,media plates, slides oh bacteria.	Lab Work
CO-5	Demonstrate plate count methods .	Lab Work
CO-6	Practice and demonstrate various staining, microbial growth curve.	Lab Work

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: B.Sc. Biotechnology (Hons.)

NAME OF COURSE: Industrial Fermentations (BHB 20)

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Evaluate the production of industrial chemicals, biochemical & chemotherapeutic. Propionic	Exams, Class tests, class assignment, group discussion,
	acid, butyric acid, gluconic acids, itaconic acid; Biofuels(Biogas, Ethanol, Butanol,	Seminars.
	Hydrogen, Biodiesel)	
CO-2	Define Microbial production pharmacological interest, steroids fermentations transformation,	Exams, Class tests, class assignment,
	Secondary metabolism.	Presentations and Seminars.
CO-3	Explain Enzyme & Cell immobilization techniques in industrial processing, enzyme in organic	Exams, Class tests, class assignment, presentations and
	synthesis, proteolytic enzymes, hydrolytic enzymes, glucose isomerises, enzyme in food .	Seminars.
CO-4	Demonstrate Purification & Characterization of proteins, upstream and downstream	Exams, Class tests, class assignment, group discussion.
	processing, solid and liquid handling.	

CO-5	Discuss the distribution of microbial cells , centrifugation filtration of fermentation broth, ultra	Exams, Class tests, class assignment, group discussion.
	centrifugation, liquid extraction, ionic exchange recovery of biological products. Design	
	model of fermentation system.	
CO-6	Calculate Rate equation for enzyme kinetics, simple and complex reaction, Inhibition	Exams, Class tests, class assignment Group discussions,
	kinetics. Evaluate mathematical derivation of growth kinetics and metabolic engineering of	group assignments.
	antibiotic biosynthetic pathway.	

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: B.Sc. Biotechnology (Hons.)

NAME OF COURSE:Practical Pertaining to theory BHB 20

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Comparative analysis of design of a batch and continuous batch fermentor.	Lab work
CO-2	Calculate of mathematical derivation of growth kinetics .	Lab work
CO-3	Demonstrate solvent extraction of metabolite from bacterial culture.	Lab work
CO-4	Analysis of metabolite from bacterial culture.	Lab work
CO-5	Perform an enzyme assay and its hydrolytic activity	Lab work

CO-6	Communicate industrial fermentation related concepts and experimental results through	Viva, quiz, class assignments
	effective written and oral communication.	

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B.Sc. (Hons) Biotechnology

NAME OF COURSE:Biochemistry (BHB1)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Describe the chemistry of carbohydrates, lipids, proteins and amino acids.	Exams, Oral Exams, Quizzes, Home Assignments
CO-2	Define the structure and function of nucleotides and nucleosides.	Exams, Oral Exams, Quizzes, Home Assignments
CO-3	Explain the structure, function and the mechanism of action of enzymes.	Exams, Oral Exams, Quizzes, Home Assignments.

CO-4	Enlist various classes of enymes.	Exams, Oral Exams, Quizzes, Home Assignments
CO-5	Express the concept of Metabolism	Exams, Oral Exams, Quizzes, Home Assignments
CO-6	Describe the catabolic and anabolic reactions related to carbohydrates and Lipids.	Exams, Oral Exams, Quizzes, Home Assignments

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE PROGRAM : B.Sc (BT) 1st(1stSEM)

NAME OF THE COURSE : (English Communication Skills I)

NAME OF FACULTY : Lovepreet Singh (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Compare and contrast different genres of short stories.	MST, Class tests, Class Assignment.
CO 2	Explain major themes of short stories that will make students capable to raise significant	MST, Class Assignment, Class tests.
	question, to enhance their creative expressions and reach well reasoned conclusion.	
CO 3	Designing letters for formal communication.	MST, Class assignments, Class tests,
CO 4	Apply the LSRW skills.	MST, PPTs.
CO 5		MST, Participation in class, Class assignments, Class
	Practise English grammar to aware the students about the correct usage of it.	tests.
CO 6		MST, Participation in class, Class assignments, Class
	Develop the fluency of language, and presentation skills.	tests.

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B.Sc. (Hons) Biotechnology

NAME OF COURSE:Biochemistry Practicals pertaining to BHB101

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Analyze the activity of an Enzyme under optimum conditions.	Virtual lab
CO-2	Caliberate the effect of pH and Temperature on activity of salivary amylase enzyme.	Virtual lab

CO-3	Calculate the blood glucose by glucose oxidase method.	Vitual lab
CO-4	Analyze the quantitative estimation of proteins in unknown sample.	Virtual lab
CO-5	Identify the amino acids by paper chromatography.	Virtual lab
CO-6	Preparation of Buffers.	Virtual lab

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: **B.Sc. Biotechnology**

NAME OF COURSE:Biochemical engineering(paper iv)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Explain Biochemical Engineering	Exams, Oral Exams, Quizzes, Home Assignments
CO-1	Explain Biochemical Engineering	Exams, Oral Exams, Quizzes, Home Assignments
CO-2	Define Medium sterilization.	Exams, Oral Exams, Quizzes, Home Assignments

CO-3	Demonstrate different types of Bioreactor as well as Explain scale-up and Kinetics.	Exams, Oral Exams, Quizzes, Home Assignments
CO-4	Identify different control and monitoring instruments in bioprocess and Calculate the mass transfer coefficient (KLa) in different phases during Bioprocess.	Exams, Oral Exams, Quizzes, Home Assignments
CO-5	Classify different processes used in Downstream processing.	Exams, Oral Exams, Quizzes, Home Assignments
CO-6	Define different chromatographic techniques used in purification of bioproducts.	Exams, Oral Exams, Quizzes, Home Assignments

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: B.voc Food processing

NAME OF COURSE: Practcal pertaining to Introduction to grain milling and machineries (BVFP-312)

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Demonstrate general principle of milling of Wheat through industrial visit.	Exams, Oral Exams, Quizzes, Home Assignments
CO-2	Identify adultration in wheat flour by NaHCo3 method.	Virtual lab
CO-3	Calculate alcoholic acidity in given sample of flour	Virtual lab

CO-4	Indentify Moisture content in wheat flour	Virtual lab
CO-5	Estimate ash value in given flour sample.	Virtual lab
CO-6	Demonstrate different types of mills used in grain miling process.	Exams, Oral Exams, Quizzes, Home Assignments

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: BSc Biotechnology (Hons).

NAME OF COURSE:General Microbiology (BHB-13)

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Identify the various classification of microorganism .	Exams, Class tests, presentations and Seminars.
CO-2	Define morphology & cell structure of major groups of microorganisms.	Exams, Class tests, class assignment, Presentations and Seminars.
CO-3	List the varios methods of cultivation and maintenance of microorgamisms.	Exams, Class tests, class assignment, presentations and

		Seminars.
CO-4	Draw & demonstrate growth curve, generation time, sychronious batch & countionous culture.	Exams, Class tests, class assignment, presentations and
		Seminars.
CO-5	Determine the various methods based to control growth of mocroorganisms And define water	Viva, quiz, class assignments
	microbiology, Food microbiology	
CO-6	Work collaboratively with members of a team in classroom and /or laboratory activities.	Group discussions, Group projects and group assignments.

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: B.Sc (hons.) Biotechnology

NAME OF COURSE: Spectroscopic techniques BHB19

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Describe the concept of light interaction with matter and analyze quantitative chemical	Exams, Class tests, class assignment, and Seminars.
	sample by using this technique.	
CO-2	Define the common tools used in spectroscopy.	Exams, Class tests, class assignment,
		Presentations and Seminars.
CO-3	Classify the different types of spectroscopy techniques.	Exams, Class tests, class assignment, presentations and
		Seminars.

CO-4	Demonstrate the basic concept of instrumentation, data acquisition and data processing.	Exams, Class tests, class assignment, group discussion.
CO-5	Enlist the photoelectric effect and different types of spectroscopy related to this concept such as UPES, XPES and ESCA.	Group discussions, class assignments, Exams.
CO-6	Describe the magnetic field spectra (NMR)	Exams, group assignments .

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNAJB

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: B.Sc (Hons.) Biotechnology

NAME OF COURSE:Practical Pertaining to theory BHB19

NAME OF FACULTY: Parneet Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Analyze the chemical compounds by NMR spectroscopy.	Lab work
CO-2	Identify chemical compounds using emission spectroscopy	Lab work
CO-3	Classify 5 different chemical compounds by absorption spectroscopy.	Lab work
CO-4	Demonstrarte working principle of Electron spectroscopy	Viva, quiz, class assignments
CO-5	Enlist different tools required in photoelectron spectroscopy.	Viva, quiz.

CO-6	Communicate spectroscopy related concepts and experimental results through effective	Viva, quiz, class assignments
	written and oral communication.	

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNAJB

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: B.Sc (Hons.) Biotechnology

NAME OF COURSE:Practical Pertaining to theory -BHB13

NAME OF FACULTY: Parminder Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Perform the experiments to isolation of bacteria.	Lab work
CO-2	Practice the different methods of staining.	Lab work
CO-3	Apply the various sterilization methods and prepare different types of media.	Lab work
CO-4	Estimate the amount of different bacterial cells.	Lab work
CO-5	Communicate microbiology related concepts and experimental results through effective	Viva, quiz, class assignments

	written and oral communication.	
CO-6	Work collaboratively with members of a team in classroom and /or laboratory activities.	Group discussions, Group group assignments.

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNAJB

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: BscBiotechnology Hons. Ist sem

NAME OF COURSE: Plant anatomy and physiology

NAME OF FACULTY: Mrs. Jaspreet Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Demonstration of basic plant chemistry and physiology	Exams, Class tests, class assignment,.
CO-2	Explain photosynthesis, cellular respiration.	Exams, Class tests, class assignment, Seminars.
CO-3	Discuss plant water relationship, mechanism of stomatal opening and closing	Exams, Class tests, class assignment, presentations.
CO-4	Differentiate different phases of growth curve, growth hormones, concept of photoperiodisim, vernalisation.	Exams, Class tests, class assignment
CO-5	Describe micro and macro nutrient, mechanism of uptake	Viva, quiz, class assignments
CO-6	Illustrate histological organization of root and shoot	Group discussions, class assignments Exams, Class tests

Mapping of Po's and Co's

NAME OF DEPARTMENT-- Biotechnology and Food Processing

NAME OF PROGRAMME-- B.Sc Biotechnology

CORI	RELAT.	ION LEVEL	:1,2, and 3;1-SLIGHT (LOV	V); 2-M	IODER.	ATE (N	ИEDIU	M) 3- I	HIGH				MENT	ION GA	P ANA	LYSIS A	AT THE	END	
S.NO	Year	Semester	Name of Course/Code		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
				CO ₁	2	1	2	1	3	3	1				3	3	1		1
				CO ₂	3	1	2	1	2	2	2	1	1		3	1	1		1
1			Biochemistry &	C03	2	1	2		3	2	1	2	1	1	3	3	2	1	2
1			Metabolism / BHB1	CO4	3	2	3	3	1	1	1	2		1	2	3	3	1	3
				CO5	1	1	3	2	2	2	2	1	2	1	3	1	1	1	1
	2019			CO6	3	2	3	2	1	2	2	2	3	2	3	2	2	1	2
	-	1st		CO ₁	3	2	1	3	2	3		1	2	1	3	3	1	1	1
	2020		DD 4 CETT C 4 T C	CO ₂	2	1	1	1	1	2	1	2	1	1	3	1	1		1
2			PRACTICALS PERTAINING TO	CO ₃	2	1	1	1	1	1	1	1	2	1	2	3	3	2	2
4			(BHB1)	CO4	1	2	1	2	1	1	1	1	2	2	2	3	3	2	3
			(21101)	CO5	3	2	2	1	1	1	2	2	3	2	3	3	3	3	3
				CO6	2	1	2	1	1	1	1	2	3	1	2	3	3	1	1
3			Cell Biology / BHB2	CO1	1	1			·		1	1	1	1	1	1		1	1

		CO ₂	1	1		1	1			2	1	1	1	1	1	1	
		C03	1	1			1			1	1	1	1	1	1	1	
		CO4	1	1		1	1		1	1	1	1	1	1	1	1	
		CO5	1	1	1	1	1	1	2	1	1	1	1	1		1	
		CO6	1	1	2	1	1	3	2	3	2	2	2	3	1	1	
		CO1	1	1		1	1		1	1	1		1	1		1	
		CO ₂	3	1	1	1	1	2		1	1	1	2	1	2	1	2
	PRACTICALS PEDTA DIDIG TO	CO ₃	2	2	1	2	1		1	2	1	2	2	2	2	1	1
4	PERTAINING TO (BHB2)	CO4	1	1	1	2	1	1	1	2	1		2	1	2	1	1
	(DHD2)	CO5	1	1	1	2			1	1	1	1	1	1		1	
		CO6	1	1	1	2		1	1	2	1	1	2	2	2	1	2
		CO1	3	2	1	3	2			1	2		1	3	1		3
		CO ₂	3	1	1	1	1			1	3	1	2	3	3	1	
_	D'	C03	3	1		3			1	1	1		1	1	2		3
5	Biostatistics / BHB4	CO4	3			1			2	1	1		1	1	2		3
		CO5	3	2	3	3	2	2		2	3		1	1	2		3
		CO6	3	2	3	3	3	3	3	3	3		1	1	2		3
		CO1	1	1									1	1			
		CO ₂		2	1			1		2	2			1			
	PRACTICALS PEDTA DIDIG TO	CO ₃				2					1		2	3	1	1	
6	PERTAINING TO (BHB4)	CO4			1	2		1			3			1		1	
	(DIID 4)	CO5		1	1	1		1			2			2		1	
		CO6															
		CO1					1										
		CO ₂					1		1								
7	English / BHB3	C03					1		1								
		CO4					2										
		CO5					1										

ĺ							1												
				CO6					1										
				CO1		1			2	1									
				CO ₂								1	1			2			
8			Punjabi / BHB5	CO ₃		1	1		2										
0			Tunjabi / Biib3	CO4		1	1		2										
				CO5					2					1					
				CO6			1	1	1	1									1
				CO1	2			2		1		2		1	3		1		
				CO ₂	2		1	1		1		2	1	1	2			1	
			Mammalian Physiology /	CO ₃	1			1		1		1	1	1	1			1	1
9			ВНВ6	CO4	2		1	2		1		2		2	2	2	1		2
				CO5	2			2		1		1		2	3	1			1
				CO6	2			2		1		2	1	1	2	1			2
	-			CO ₁	2	1	1	3	2		1	3	3	3	1	3	1	2	2
				CO ₂	3	2	1	3	2		1	3	3	3	1	3	1	2	3
			PRACTICALS	CO3	3	2	1	2	1		1	3	3	3	1	3	1	2	3
10			PERTAINING TO	CO4	3	2	1	3	1		1	3	3	3	1	3	1	2	2
		2nd	(BHB6)	CO5	2	1	1	2	1		1	3	3	2	2	2	1	2	2
		211u		CO6	2	1	1	2	2		1	3	3	2	1	3	1	2	2
	-			CO ₀	3	1	1	1	1	1	1	2	1	1	2	1	1	2	2
				CO ₂	3	1	1	2	1	2	1	1	1	1	2	1	1		
			DI 4 4 4 0		2	-	+	1	1	2	1	+	+	1	2				
11			Plant Anatomy & Physiology / BHB7	CO3		1	1	1	1	1		1	1	1	-	1	1	1	1
			T Hystology / D11D/	CO4	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
				CO5	2			1	1	1	1	2	1	1	2	1	1	1	1
				CO6	2	4		2			1	1	1	1	2	1	1	1	1
1.0			PRACTICALS	CO1	1	1		3				2	1	1	1	1		1	
12			PERTAINING TO	CO ₂	1	2				1	2	1		2	1	1		1	
			(BHB7)	CO ₃	1	1			1	2	1	3		2	2	2		2	

			CO4		1				2	1	2		1	2	1		1	
			CO5	1	1			1	1	1	1		1	1	1	1	1	
			CO6	1	1		1	1	1	1	1		1	1	1	1	1	1
			CO1					1										
			CO ₂					1		1								
13		English / DIID0	CO3					1		1								
13		English / BHB8	CO4					2										
			CO5					1										
			CO6					1										
			CO1	1		1	2			3	1			2	2		2	
			CO ₂	2	2	1	2	2	2	2	3	2		3	2	1	1	
		Microbial Physiology /	CO ₃	2					1		1			2				
14		внв9	CO4	2		1		1			2			1	1	1	2	
			CO5	2	2		2				3	2	2	2	2		1	
			CO6	2		2	2	2		3		1		2				
			CO1	2	1		2	2	2		2			2				
			CO ₂	2	1	2	2	2	1	1	2			2	2		2	
		PRACTICALS	CO ₃	2	1		1	2			1		3	2				
15		PERTAINING TO	CO4	2	2	2			1		2			1	3			
		(BHB9)	CO5	2	3		3				1		2			2		
			CO6	3	2	2	3	3		2		2	3	3	2	1	2	1
			CO1		1	_		2	1						_		_	
			CO ₂								1	1			2			
			CO3		1	1		2										
16		Punjabi / BHB10	CO4		1	1		2										
			CO5		_			2					1					
			CO6			1	1	1	1									1
17		Drug Abuse / BHB11	CO1		1	1	1	1	1		1		1					1
1/		Diug Abuse / Diibii	COI		1		1	1			1		1					

ı				•						ı	ı		ı	ı	ı			I
			CO ₂		1		1	1			1		1					
			CO ₃		1		1	1			1		1					
			CO4		1		1	1			1		1					
			CO5		1		1	1			1		1					
			CO6															
			CO1	2	1		3	2	2	2		2		1	3	3		3
			CO ₂	1			1					2	1	2				
10		CENTERIOS (DIDA)	C03	1	2		1	3	3	3	1	2		1	3	3	2	1
18		GENETICS (BHB12)	CO4	3	1							2	1	3				
			CO5		2	2	3			2	3	3		2	3	3	1	3
			CO6	1	3		1						1	3	1	1		
			CO1	1	1									3	3	1		2
			CO ₂		2	1			1		2	2		3	3	1		2
40			C03				2					1		3	1			
19			CO4			1	2		1			3		2		1		1
		PRATICAL PERTAINING TO	CO5		1	1	1		1			2		3	1	2		1
	3rd	BHB12	CO6											3	3	3		2
			CO1	3				3			1			2				
			CO ₂	2				2	1	1	1	2		1	1	1	1	2
		General Microbiology	CO ₃		1	2			2	1	2	2	2		1	2		2
20		(BHB-13)	CO4		3	3	2				1			1	2	3	2	3
			CO5		3	3	1		1	3	3	2	1		3	3	2	3
			CO6		2					1		3	3			1	3	3
			CO1	3		2					2			1	2	2		
			CO ₂	3		1					2			1	2	2		
21		Pratical pertaining to	CO3	2	2	3	2		2	2	2	3		1	1	2	1	1
		BHB-13	CO4		2	2				2	1			1	1			
			CO5	3	3	3	2	3	2	2		2	2	3	1		2	2
							_		_	_		_	_		_		_	_

		CO6	3	1	1	1	2	1				3	2	1		2	2
		CO1	3	1	1	1	2	1		1	1		3	2	2	2	
		CO ₂	3	1	1	1	2	1		1	1		3	2	2	2	1
22	Enzymology SEC-I	CO3	3	1	1	2	1	3	2	3	3		3	2	1	2	1
22	BHB14	CO4	2	1	1	3	1	1	1	2	2	2	2	3	3	2	3
		CO5	2	1	1	1	3	3	2	1	1	1	2	1	2	1	1
		CO6	1	1	2	1	2	1	1	1	2	3	2	2	1	1	1
		CO1	2	2	2	3	2	1	1	3	3	2	2	3	3	2	1
		CO ₂	1	2	1	3	1	1	1	3	3	1	2	3	3	1	1
22	Pratical pertaining	CO3	2	2	2	3	2	1		3	3	2	2	3	3	2	1
23	toSEC-I BHB14	CO4	1	2	1	3	1	1	1	3	3	1	2	3	3	1	1
		CO5	2	1	1	1	3	3	2	1	1	1	2	1	2	1	1
		CO6	1	1	2	1	2	1	1	1	2	3	2	2	1	1	1
		CO1	2	2	3			2	3	2	2	3	3	2	2	2	2
		CO ₂	3	2	3	2			3	1			2	2	2		
24	Sprctroscopic	CO3	2	1	3			2	2	2	2		3	2	2	2	2
24	Techniques BHB15	CO4	1	1	2			2	3	1			2		2	2	
		CO5	2	1	3	2			3			2	3		2		
		CO6	2	1	3	1			3			2	3		2	2	2
		CO1	1	2	2	2	1				1		1	3	3	1	
		CO ₂	2	2	2	3			1	3	1		2	2	3	2	1
25	Pratical pertaining	CO ₃	2	2	2	3			1	3			2	2	3	2	1
25	toSEC-I BHB15	CO4		2	1	3	2		2	3	1	2	1	1	3	2	1
		CO5		2		1	2		2	1		1	2	2	2		
		CO6	3	2	1	3		2	1		2	3	3			2	
	.	CO1	3		2		2	3	1		3		3	2		1	
26	Environmental	CO ₂	2	2		1	3	3		1	2	1	3	3	2		
	Biotechnology BHB16	CO ₃		3	2	3	2	2		2	1	2	2	3	2		

			CO4	2	2	2	1	2	3	1	1	3		3	2	2		
			CO5	2	3	2	3	2	2		2	2		2	1	2	1	
			CO6	3		1	2	2	3	1		2		3	2	3		
			CO1	3	2	2	2	1	2	2	1	3	3	1	3		2	1
			CO ₂	3	2	2	1	1	2	2	1	3	3	1	3		2	1
27		Pratical pertaining to	CO3	3	2	2	1		2	2	1	3	3	1	3	1	2	2
21		SEC-I BHB16	CO4	2	2	2	2		1	3	2	3	3	2	3	1	1	3
			CO5	3	2	3	1		2	2	1	3	3	1	3	2	1	1
			CO6	3	2	2	2	1	2	3	2	3	2	2	3	2	2	2
			CO1	3		3		2		1				3				1
			CO2	2	3		2		1		3	2		2	3	3	2	2
28		Molecular Biology/	CO3	1		3				3	1	3	3	1	3	3	2	1
20		BHB17	CO4	3	2	1	2		2		2	2		3	2	1	2	1
			CO5				1	3			3	2	2					1
			CO6	1			1	2						2				2
			CO1	1	1									1	1			
			CO ₂		2	1			1		2	2			1			
29		Pratical pertaining to	CO ₃				2					1		2	3	1	1	
	4th	BHB17	CO4			1	2		1			3			1		1	
			CO5		1	1	1		1			2			2		1	
			CO6															
			CO1	2			1	2	1		1	1		3	1			
			CO ₂	3			2	1	1		2	2		2	1			
30		Immunology / BHB18	CO3	2			3	2	2		2	2		1	2			
30		immunology / DiiD16	CO4	3		1	2	1	1		2	3		2	3			2
			CO5	3		2	1	2	2		1	1		1	1	2		1
			CO6	2		3	3	3	2		1	1		3	2	1		2
31		Pratical pertaining to	CO1	2	1	1	3	2		1	3	3	3	1	3	1	2	2

		BHB18	CO ₂	3	2	1	3	2		1	3	3	3	1	3	1	2	3
			CO2	3	2	1	2	1		1	3	3	3	1	3	1	2	3
			CO4	3	2	1	3	1		1	3	3	3	1	3	1	2	2
			CO5	2	1	1	2	1		_	3	3	2	2	2	1	2	2
			CO6	2	1	1	2	2		1	3	3	2	1	3	1	2	2
			CO1	2	2	3			2	3	2	2	3	3	2	2	2	2
			CO ₂	3	2	3	2			3	1			2	2	2		
20		Spectroscopic Techniues	CO3	2	1	3			2	2	2	2		3	2	2	2	2
32		/ BHB19	CO4	1	1	2			2	3	1			2		2	2	
			CO5	2	1	3	2			3			2	3		2		
			CO6	2	1	3	1			3			2	3		2	2	2
			CO1	1	2	2	2	1				1		1	3	3	1	
			CO ₂	2	2	2	3			1	3	1		2	2	3	2	1
33		Pratical pertaining to	CO3	2	2	2	3			1	3			2	2	3	2	1
		BHB19	CO4		2	1	3	2		2	3	1	2	1	1	3	2	1
			CO5		2		1	2		2	1		1	2	2	2		
	-		CO6	3	2	1	3		2	1		2	3	3			2	
			CO1	2	2		2	3	1		1		2		2			1
			CO ₂	3	1		1		1	1		1		2		3		
34		Industrial Fermentation	CO3	3	1			2	2			2		1		1	1	
		/ BHB20	CO4	2	3		2	2		1		2	3	4	2		2	
			CO5	2	1	2	1		2	3	2	3		1	1		1	2
			CO6	1	2	1	2	1	3	3	2		1	1	2		1	
			CO1	2	2		1	2	1	2	2	1	2	2	3	1	1	2
35		Pratical pertaining to	CO2	2	2		1		1	<i>L</i>	1	2	4	4	1	2	1	2
35		BHB20	CO4	3	4	2		2	1	1	1	3	2	1	1	1	1	1
			CO4 CO5	1	1	4	2	4	3	1	2	3	1	1	1	1	1	1
			CU3	1	1		4		3		4		1		1		1	

36			CO6	2		1	1									_		
36			001			1	1		3		2		2	2		2		
36			CO ₁	1	2	2				2	2	2	2	1	1			1
36			CO2	2	2	1				1	1	2	2	2	1			1
30		Chamistury/manan I	CO3		2		2		1		2	2	2		1			1
		Chemistry/ paper I	CO4	2		1	2			2		1		2	1			1
			CO5	1	1			2	2		1	2	1		1			1
			CO6	2	2			2	2		2		1		1			1
			CO1	3		2		2	3	1		3		3	2		1	
			CO ₂	2	2		1	3	3		1	2	1	3	3	2		
37		Environmental	CO3		3	2	3	2	2		2	1	2	2	3	2		
31		Biotechnology / paper II	CO4	2	2	2	1	2	3	1	1	3		3	2	2		
			CO5	2	3	2	3	2	2		2	2		2	1	2	1	
	5th		CO6	3		1	2	2	3	1		2		3	2	3		
	Sui		CO1	3	1		1	1		1	2	2	1	2	2		1	1
			CO ₂	2	2		2	1	1	1	2	2	2	2	2	2	2	1
38		 Immunology / Paper III	CO3	2	1	1	1	1	1	1	2	3	1	1	2	2	1	3
36		minunology / Faper III	CO4	1			2	1	1	1	2	2	1	1	2		2	1
			CO5	2	1	2	1	1	3	1	3	2	2	2	2	2	1	2
			CO6	2	2	1	2	2	3	1	3	3	2	2	2	2	2	2
			CO1	2	1	2	1	3	3	1				3	3	1		1
			CO ₂	3	1	2	1	2	2	2	1	1		3	1	1		1
39		Biochemical Engineering	CO ₃	2	1	2		3	2	1	2	1	1	3	3	2	1	2
39		/ Paper IV	CO4	3	2	3	3	1	1	1	2		1	2	3	3	1	3
			CO5	1	1	3	2	2	2	2	1	2	1	3	1	1	1	1
			CO6	3	2	3	2	1	2	2	2	3	2	3	2	2	1	2
			CO1	1	2		2		2	2	2	2	1	2	1			1
40	6th	Chemistry / Paper V	CO ₂			1		2	2	1	2		1		1			1
			CO3	1	1	1	3			1	1	1		2	1			1

1									ı	ı					I	ı	ı	
			CO ₄		2			1	2	1			1	2	1			1
			CO5	1		1	2		2	1	1	2		1	1			1
			CO6	1	1	1	2	1		1	2	2	1	2	1			2
			CO1	1	3	1	3	1	1	1	1			3	3	1	1	1
			CO ₂	3	2	1	1	2	2	1	2	2		3	1	1		1
41		Microbial Technology /	CO ₃	1		2		1	1	3	2	1		2	3	3	2	2
41		Paper VI	CO4	3	3	3	2	3	3	1	3	3	2	2	3	3	2	3
			CO5	3	3	3	2	1	1	2	1	3	3	3	3	3	3	3
			CO6	2	1		1	1	1	2	2	2	2	2	3	3	1	1
			CO1	3	2									3				1
			CO ₂	2	2	3	3	2		3	3	1		2	3	3	2	2
42		Tissue Culture	CO ₃	1	1			3	3	1	3	2	2	1	3	3	2	1
42		Technology / Paper VII	CO4				2	3		2	3	2			2	1	2	1
			CO5				1	2										1
			CO6				1	2										2
			CO1	3	2	3			1	2			1	3	1		1	
			CO ₂	2	2	2	1	2	2	1	2	2		2	2	2		2
43		Fermentation	CO ₃	2		1		2	1			2		3		2	2	2
43		Technology / Paper VIII	CO4	3	3	3	2	3	2			2	3	2	2	3	1	1
			CO5			1		2		2			2	3	2	1		
			CO6	3		2	2	3	3			3	2	2	2	2		1

Attainment of PO by Direct Method

								TOTA				TOTA				TOTA						TOTA			
Sr		Ro			Th	Int	Pra	L	Th	Int	Pra	L	Th	Int	Pra	L	The	The	The	Int	Pra	L			
N		11		Reg	eor	ern	ctic	(T+I+P)	eor	ern	ctic	(T+I+P)	eor	ern	ctic	(T+I+P)	ory-	ory-	ory-	ern	ctic	(T+I+P)			
О	Name	no		No	y	al	al)	y	al	al)	y	al	al)	A	В	C	al	al)			
			37	814-																			3	71.11	
	Simranj	15	52	16-	26	15	25	66	35	16	25	76	26	16	25	67	20	15	12	26	38	111	2	1111	Lev
1	eet Kaur	01	1	452																			0	1	el 3
			37	814-																			3	72.66	
	Arshpre	15	52	16-	29	15	24	68	37	16	25	78	32	16	25	73	20	14	14	24	36	108	2	6666	Lev
2	et Kaur	02	5	433																			7	7	el 3
			37	814-																			3	79.33	
	Sukhpre	15	52	16-	37	15	27	79	37	17	27	81	40	16	26	82	22	18	16	22	37	115	5	3333	Lev
3	et Saini	03	9	436																			7	3	el 3
			37	814-																			3	73.33	
	Harjinde	15	52	16-	27	14	25	66	36	16	26	78	37	16	27	80	20	17	13	22	34	106	3	3333	Lev
4	r Kaur	04	7	435																			0	3	el 3
			37	814-																			3	68.88	
	Jashanpr	15	53	16-	18	15	25	58	32	16	24	72	34	16	24	74	18	19	13	21	35	106	1	8888	Lev
5	eet Kaur	05	0	437																			0	9	el 3
			37	814-																			3	75.77	
	Japinder	15	53	16-	29	16	28	73	34	17	27	78	35	17	26	78	19	18	14	23	38	112	4	7777	Lev
6	Kaur	06	2	439																			1	8	el 3
			37	814-																			3	72.44	
	Harpreet	15	53	16-	30	16	26	72	34	17	26	77	25	16	27	68	18	17	14	22	38	109	2	4444	Lev
7	Kaur	07	3	440																			6	4	el 3
			37	814-																			3		
	Pallvi	15	53	16-	31	14	27	72	40	16	27	83	40	16	26	82	20	18	16	21	39	114	5		Lev
8	Sharma	08	6	455																			1	78	el 3
		_	37	814-																			3	68.22	
	Parneet	15	53	16-	21	14	26	61	37	16	25	78	29	16	24	69	14	18	8	21	38	99	0	2222	Lev
9	Kaur	09	5	441																			7	2	el 3

10	Sonia	15	37 54	814- 16-	20	15	25	60	32	16	25	73	28	16	25	69	17	12	14	21	35	99	3 0	66.88 8888	Lev
10	Devi	10	8	444																			1	9	el 3
	Icchonne	15	37 52	814- 16-	30	15	26	71	40	16	25	81	41	17	25	83	22	17	17	21	41	118	3	78.44 4444	Lev
11	Jashanpr eet Kaur	13	53 8	456	30	13	20	/ 1	40	10	23	01	41	1 /	23	63	2,2	1/	1/	21	41	110	5 3	4444	el 3
11	cet ixaui	11	37	814-																			3	76.88	CI 3
	Amanjot	15	52	16-	30	17	28	75	33	17	28	78	28	17	28	73	18	20	16	26	40	120	4	8888	Lev
12	Kaur	12	2	430																			6	9	el 3
	Harman		37	814-																			3	78.88	
	preet	15	52	16-	26	17	27	70	38	17	28	83	35	18	28	81	20	18	17	26	40	121	5	8888	Lev
13	Kaur	13	3	431																			5	9	el 3
		1.5	37	814-	26	17	20	0.1	25	177	20	00	25	1.0	20	0.1	20	10	1.0	26	4.1	100	3	80.88	T
14	Gurpree t Kaur	15 14	53	16- 454	36	17	28	81	35	17	28	80	35	18	28	81	20	19	16	26	41	122	6 4	8888	Lev el 3
14	t Kaul	14	4 37	814-																			3	83.55	61.5
	Neha	15	53	16-	36	17	28	81	41	17	28	86	37	18	28	83	22	19	18	26	41	126	7	5555	Lev
15	Banwal	15	7	442		-,		01		-,			,	10					10			120	6	6	el 3
			37	814-																			3	71.33	
	Navneet	15	52	16-	25	14	23	62	37	16	24	77	37	17	25	79	20	18	9	21	35	103	2	3333	Lev
16	Kaur	16	6	434																			1	3	el 3
		1.5	37	814-	21	1.5	25	71	40	1.0	26	02	40	17	26	0.5	20	20	1.0	22	40	120	3	79.55	T
17	Manpre et Kaur	15 17	52	16- 432	31	15	25	71	40	16	26	82	42	17	26	85	20	20	18	22	40	120	5	5555	Lev el 3
1 /	et Kaur	1 /	4 37	814-																			8	6 56.44	ei 3
	Gurinde	15	54	16-	13	13	23	49	27	15	24	66	18	16	24	58	13	10	6	18	34	81	5	4444	Lev
18	r Singh	51	2	446	13	13	23	17		13	2 1	00	10	10		30	13	10	O	10	3.		4	4	el 2
	8		37	814-																			2	54.88	
	Jaswind	15	54	16-	18	13	22	53	18	15	24	57	18	16	24	58	13	11	3	18	34	79	4	8888	Lev
19	er Singh	52	3	447																			7	9	el 2
			37	814-												_							2	61.11	
20	Gurkirat	15	54	16-	18	14	23	55	25	16	25	66	22	17	23	62	16	16	11	18	31	92	7	1111	Lev
20	Singh	53	4	457																			5	1	el 3

21	Gaurav Pal	15 54	37 54 5	814- 16- 449	18	14	22	54	22	16	25	63	20	16	23	59	13	13	4	18	31	80	2 5 6	56.88 8888 9	Lev el 2
22	Kulbir Kaur	15 18	37 53 9	814- 16- 443	13	13	27	53	28	15	23	66	22	15	27	64	11	12	7	15	29	74	2 5 7	57.11 1111 1	Lev el 2
	%																							79.89	

Average PO attainment by direct method=**79.89** %

POs		Attainment of P	O by Indirect Metho	od (Exit Survey)			Level of attainment
105	No. of 1	No. of 2	No. of 3	No. of 4	No. of 5		
1				13		80	level 3
2			1	11	1	80	level 3
3			1	11	1	80	level 3
4		2	3	6	2	72.31	level 3
5		3		7	3	75.38	level 3
6			3	8	2	78.46	level 3
7			1	9	3	83	level 3
8			1	10	2	81.54	level 3
9			1	8	4	84.62	level 3
10			1	7	5	86.15	level 3

Average PO attainment by indirect method is 80.14 %

Total PO attainment (%) = (weightage: 80 %) X (Average attainment in direct method) + (weightage: 20 %) X (Average attainment in indirect method)

$$= (80\%) X 79.89 + (20\%) X 80.14$$

= 79.94 %

Level of Attainment = Level 3